2013年2月23日
ず~っと企業コンサルティングとネットショップで多忙を極めていまして、こっちまで手が回らない状態でした。
いま確認したら二年間ほど放置プレイ・・・。
今週からある程度手が空きましたので、ぼちぼちこのコンサルティングブログも再開しようかと思います。
ほったらかしの間も随分大勢の人が見に来てくれたみたいで、まことに申し訳ありませんでした。
今後ともコンサルティング高知よろしくお願いしますね~。
1.ご挨拶
初めまして。 松下です。
このブログはウェブサイト「コンサルティング高知」のブログです。
ここではコンサルティングに関係するいろいろな知識・情報などを発信していきたいと思います。
とりあえずカテゴリーは、下記のように分類しました。
・TPM :日本プラントメンテナンス協会主催の企業効率化活動です。
・ISO9001 :国際標準化機構による品質に関する国際規格です。
・QC活動 :QC活動、TQC,TQMなどについて記述します。
・品質管理 :品質管理の基礎知識について記述します。
・問題解決 :あらゆる問題解決のノウハウについて記述します。
・見える化 :改善活動の基本、見える化について記述します。
・役立つ雑知識 :仕事や生活に役立つ知識です。
・コンサルツール :これまでに会得したノウハウ・ドウハウについて記述します。
・ウェブコンサル :HP作成(ホームページ作成)やSEOについて記述します。
・企業における経営改善活動:エッセンスをざくっとまとめてみました。
・実験計画法:1因子、2因子実験法、直交表などについて実例を説明します。
・著名人の言葉:いろいろな分野の著名人や著作者の言葉をご紹介します。
・one point lesson:企業ワンポイント講習用資料です。
・化学プラント:主に化学プラント関係の記述情報を掲載します。
・未分類 : 該当するカテゴリーのない記事です。思いついたことを書いていきます。
右のカテゴリーから、閲覧したい項目をクリックしてください。→
なおコンサルティング高知ご紹介ウェブサイトは、
http://www.consulting-kochi.com/
です。 ぜひこちらもご訪問下さい。
またご質問などありましたら、記事のコメント欄あるいはメールにてご質問下さい。
メルアドは
isao@consulting-kochi.com
です。
************************************************************************
人気ブログランキング と FC2ブログランキング に参加しています。よろしければそれぞれのバナーを1回ずつクリックして、投票をお願いいたします。m(_ _)m 人気ブログランキングへ
FC2ブログランキングへ
5.連続槽型反応 装置
![photo[1]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/20110306230109b3e.png)
上図のような定常状態の連続反応装置においては、
dnA/dt = 0であるから、収支式は
FA0 - FA + rA V = 0 ・・・1
変形して
rA = (FA - FA0)/V ・・・2
または
V = (FA0 - FA)/rA ・・・3
槽内滞留時間τを τ= V/v0と定義すると、
FA0 = voCA0
FA = FA0(1-xA)=v0CA0(1-xA)
および3式から
τ=V/v0= -CA0 XA / rA ・・・4
液相反応などの定容系では、v = constであるから
1式、4式はそれぞれ次のように表せる。
v0CA0 - v0CA + rAV = 0 ・・・5
となる。
5式を変形して
τ=V/v0=-(CA0-CA)/rA
--------------------------------------------------
例題
2A → B
rA = -kCA2
で表わされる液相反応を連続槽型反応装置で行う。
Aの反応率xAを滞留時間τの関数として表す。
CA=CA0(1-xA)
であるから
rA=-kCA02(1-xA)^2
τ=-CA0xA/rA= xA/(kCA0(1-xA)2)
xAについて解くと
![c[1]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/201103062302034d1.png)
![cocolog_oekaki_2010_10_11_22_56[1]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/2011030623023352b.png)
*****************************************************
人気ブログランキングとFC2ブログランキングに参加しています。よろしければそれぞれのバナークリック投票を、お願いいたします。m(_ _)m
![banner2[1]](http://blog-imgs-26-origin.fc2.com/c/o/n/consultingkochi/20081026194134.gif)

6.連続管型反応 装置
![photo_5[2]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/20110306212810971.png)
管内の微小体積 ΔV を考え、この ΔV の物質収支を考える。
流入速度=Fj (V) ・・・1
流出速度=Fj (V+ΔV) = Fj(V) + (dFj / dV) v ・ ΔV ・・・2
生成速度=rj ・ ΔV ・・・3
蓄積速度=0 ・・・4
1~4式より
物質収支基本式
Fj0 - Fj + Gj = dnj / dt
は次式のように表される。
![485[1]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/20110306212941941.png)
上式5を整理すると、
dFj / dV = rj ・・・6
jを成分Aとすると
FA = FA0 (1-xA) ・・・7
*6式に代入して
FA0 (dxA / dV) = -rA ・・・8
これを積分して
![519[1]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/20110306213033389.png)
または
![5210[1]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/20110306213128f1c.png)
定容系の場合は、
xA= (cA0-cA) / cA0
dxA = -dcA / cA0
を用いて

と表すと便利な場合がある。
反応速度rがxAやcAの関数であれば、上の式から滞留時間τを求めることができる。
反応速度が複雑な場合は、cA0/(-rA) vs xA のグラフから図積分によってτを求める。
いま下図のように図示すると、
管型連続反応のτは、
斜線の部分面積として求めることができる。
![photo_3[1]](https://blog-imgs-12-origin.fc2.com/c/o/n/consultingkochi/201103062132236af.png)
連続槽型反応装置のばあいは、τ=cA0・xA/(-rA)
であり、τは図中の四角形AOBEで表される。
反応速度の反応率依存性が負の場合、槽型反応装置のτは管型反応装置よりも長くなる。
*****************************************************
人気ブログランキングとFC2ブログランキングに参加しています。よろしければそれぞれのバナークリック投票を、お願いいたします。m(_ _)m
![banner2[1]](http://blog-imgs-26-origin.fc2.com/c/o/n/consultingkochi/20081026194134.gif)

4.QC活動 4-25.なぜなぜ分析 追補版
そこで満足してしまい、不具合は相変わらずそのまま

2.真の原因に対して対策を立てたのはいいけど、
対策を実行しないので、クレームが止まらない

3.実行したけれど、PDCA管理が出来ていなかったので、
再び元の木阿弥

実際に「なぜなぜ分析」を指導してきた中で、上のような事例が実に多かったですねえ。
まあ維持管理が出来ていないのは、もとの対策自体に問題があった場合も多多ありましたけど。


*****************************************************
人気ブログランキングとFC2ブログランキングに参加しています。よろしければそれぞれのバナークリック投票を、お願いいたします。m(_ _)m
![banner2[1]](http://blog-imgs-26-origin.fc2.com/c/o/n/consultingkochi/20081026194134.gif)
